
Continuous x Categorical data (1 of 2)

Aug 9, 2023.

1. THIS CHAPTER explains how to summarize and visualize bivariate continuous data
across categories. Here, we delve into the intersection of continuous data and categorical
variables, examining how the former can be split, summarized, and compared across
different levels of one or more categorical variables.

2. We bring to light methods for generating statistics per group and data manipulation
techniques. This includes processes like grouping, filtering, and summarizing continuous
data, contingent on categorical variables. We visualize such data by creating juxtaposed
box plots, segmented histograms, and density plots that reveal the distribution of con-
tinuous data across varied categories.

3. Data: Suppose we run the following code to prepare the mtcars data for subsequent
analysis and save it in a tibble called tb.

Load the required libraries, suppressing annoying startup messages
library(tibble)
suppressPackageStartupMessages(library(dplyr))
Read the mtcars dataset into a tibble called tb
data(mtcars)
tb <- as_tibble(mtcars)
Convert relevant columns into factor variables
tb$cyl <- as.factor(tb$cyl) # cyl = {4,6,8}, number of cylinders
tb$am <- as.factor(tb$am) # am = {0,1}, 0:automatic, 1: manual transmission
tb$vs <- as.factor(tb$vs) # vs = {0,1}, v-shaped engine, 0:no, 1:yes
tb$gear <- as.factor(tb$gear) # gear = {3,4,5}, number of gears
Directly access the data columns of tb, without tb$mpg
attach(tb)

1

Summarizing Continuous Data

Across one Category

• We review the use of the inbuilt functions (i) aggregate(); (ii) tapply(); and the
function (iii) describeBy() from package pysch, to summarize continuous data split
across a category.

1. Using aggregate()

• We use the aggregate() function to investigate the bivariate relationship between
mileage (mpg) and number of cylinders (cyl). The following code displays a summary
table showing the average mileage of the cars broken down by number of cylinders (cyl
= 4, 6, 8) using aggregate().

agg <- aggregate(tb$mpg,
by = list(tb$cyl),
FUN = mean)

names(agg) <- c("Cylinders", "Mean_mpg")
agg

Cylinders Mean_mpg
1 4 26.66364
2 6 19.74286
3 8 15.10000

2. Discussion:

• The first argument in aggregate() is the data vector tb$mpg.

• The second argument, by, denotes a list of variables to group by. Here, we have supplied
tb$cyl, since we wish to partition our data based on the unique values of cyl.

• The third argument, FUN, is the function we want to apply to each subset of data. We
are using mean here, calculating the average mpg for each unique cyl value. We can
alternately aggregate based on a variety of statistical functions including sum, median,
min, max, sd, var, length, IQR.

• The output of aggregate() is saved in a new tibble named agg. We utilize the names()
function to rename the columns and display agg. [1]

3. Using tapply()

2

• The tapply() function is another convenient tool to apply a function to subsets of a
vector, grouped by some factors.

tapply(tbmpg, tbcyl, mean)

4 6 8
26.66364 19.74286 15.10000

4. Discussion:

• In this code, tapply(tbmpg, tbcyl, mean) calculates the average miles per gallon
(mpg) for each unique number of cylinders (cyl) within the tb tibble.

• tb$mpg represents the vector to which we want to apply the function.

• tb$cyl serves as our grouping factor.

• mean is the function that we’re applying to each subset of our data.

• The result will be a vector where each element is the average mpg for a unique number
of cylinders (cyl), as determined by the unique values of tb$cyl. [1]

5. Using describeBy() from package psych

• The describeBy() function, part of the psych package, can be used to compute descrip-
tive statistics of a numeric variable, broken down by levels of a grouping variable.

library(psych)
stats0 <- describeBy(mpg, cyl)
stats0

Descriptive statistics by group
group: 4

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 11 26.66 4.51 26 26.44 6.52 21.4 33.9 12.5 0.26 -1.65 1.36
--
group: 6

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 7 19.74 1.45 19.7 19.74 1.93 17.8 21.4 3.6 -0.16 -1.91 0.55
--
group: 8

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 14 15.1 2.56 15.2 15.15 1.56 10.4 19.2 8.8 -0.36 -0.57 0.68

3

6. Discussion:

• describeBy(mpg, cyl) computes descriptive statistics of miles per gallon mpg variable,
broken down by the unique values in the number of cylinders (cyl).

• It calculates statistics such as the mean, sd, median, for mpg, separately for each unique
number of cylinders (cyl). [2]

Across two Categories

• We extend the above discussion and study how to summarize continuous data split across
two categories.

• We review the use of the inbuilt functions (i) aggregate() and the function (ii)
describeBy() from package pysch. While the tapply() function can theoretically
be employed for this task, the resulting code tends to be long and lacks efficiency.
Therefore, we opt to exclude it from practical use.

1. Using aggregate()

• Distribution of Mileage (mpg) by Cylinders (cyl = {4,6,8}) and Transmisson Type (am
= {0,1})

agg2 <- aggregate(tb$mpg,
by = list(tbcyl, tbam),
FUN = mean)

names(agg2) <- c("Cylinders","Transmission","Mean_mpg")
agg2

Cylinders Transmission Mean_mpg
1 4 0 22.90000
2 6 0 19.12500
3 8 0 15.05000
4 4 1 28.07500
5 6 1 20.56667
6 8 1 15.40000

2. Discussion:

• In our code, the first argument of aggregate() is tb$mpg, indicating that we want to
perform computations on the mpg variable.

4

• The by argument is a list of variables by which we want to group our data, specified
as list(tbcyl, tbam). This means that separate computations are done for each
unique combination of cyl and am.

• The FUN argument indicates the function to be applied to each subset of our data. Here,
we use mean, meaning that we compute the mean mpg for each group.

3. Using aggregate() for multiple continuous variables: Consider this extension of the
above code for calculating the mean of three variables - mpg, wt, and hp, grouped by
both am and cyl variables:

• Distribution of Mileage (mpg), Weight (wt), Horsepower (hp) by Cylinders (cyl = {4,6,8})
and Transmisson Type (am = {0,1})

agg3 <- aggregate(list(tbmpg, tbwt, tb$hp),
by = list(tbam, tbcyl),
FUN = mean)

names(agg3) <- c("Transmission","Cylinders","Mean_mpg","Mean_wt","Mean_hp")
agg3

Transmission Cylinders Mean_mpg Mean_wt Mean_hp
1 0 4 22.90000 2.935000 84.66667
2 1 4 28.07500 2.042250 81.87500
3 0 6 19.12500 3.388750 115.25000
4 1 6 20.56667 2.755000 131.66667
5 0 8 15.05000 4.104083 194.16667
6 1 8 15.40000 3.370000 299.50000

4. Discussion:

• In this code, the aggregate() function takes a list of the three variables as its first
argument, indicating that the mean should be calculated for each of these variables
separately within each combination of am and cyl.

• The sequence of the categorizing variables also varies - initially, the data is grouped by
cyl, followed by a subdivision based on am.

5. Using aggregate() with multiple functions: Consider an extension of the above code for
calculating the mean and the SD of mpg, grouped by both am and cyl factor variables:

• Distribution of Mileage (mpg), by Cylinders (cyl = {4,6,8}) and Transmission Type (am
= {0,1})

5

agg_mean <- aggregate(tb$mpg,
by = list(tbcyl, tbam),
FUN = mean)

agg_sd <- aggregate(tb$mpg,
by = list(tbcyl, tbam),
FUN = sd)

agg_median <- aggregate(tb$mpg,
by = list(tbcyl, tbam),
FUN = median)

Merge them together, two data frames at a time
merged_data <- merge(agg_mean, agg_sd, by = c("Group.1", "Group.2"))
merged_data <- merge(merged_data, agg_median, by = c("Group.1", "Group.2"))

Rename columns for clarity
names(merged_data) <- c("Cylinders", "Transmission", "Mean_mpg", "SD_mpg", "Median_mpg")
merged_data

Cylinders Transmission Mean_mpg SD_mpg Median_mpg
1 4 0 22.90000 1.4525839 22.80
2 4 1 28.07500 4.4838599 28.85
3 6 0 19.12500 1.6317169 18.65
4 6 1 20.56667 0.7505553 21.00
5 8 0 15.05000 2.7743959 15.20
6 8 1 15.40000 0.5656854 15.40

6. Discussion:

• We analyze our dataset to comprehend the relationships between vehicle miles per gallon
(mpg), number of cylinders (cyl), and type of transmission (am).

• Initially, we computed the mean, standard deviation, and median of mpg for every unique
combination of cyl and am.

• After individual computations, we combined these results into a single, comprehensive
data frame called merged_data. This structured dataset now clearly presents the average,
variability, and median of fuel efficiency segmented by cylinder count and transmission
type.

7. Using describeBy() from package psych

• The describeBy() function, part of the psych package, can be used to compute descrip-
tive statistics of continuous variable, broken down by levels of a two categorical varaibles.
Consider the following code:

6

tb_columns <- tb[c("mpg", "wt", "hp")]
tb_factors <- list(tbam, tbcyl)
Use describeBy()
stats <- describeBy(tb_columns, tb_factors)
print(stats)

Descriptive statistics by group
: 0
: 4

vars n mean sd median trimmed mad min max range skew kurtosis
mpg 1 3 22.90 1.45 22.80 22.90 1.93 21.50 24.40 2.90 0.07 -2.33
wt 2 3 2.94 0.41 3.15 2.94 0.06 2.46 3.19 0.73 -0.38 -2.33
hp 3 3 84.67 19.66 95.00 84.67 2.97 62.00 97.00 35.00 -0.38 -2.33

se
mpg 0.84
wt 0.24
hp 11.35
--
: 1
: 4

vars n mean sd median trimmed mad min max range skew kurtosis
mpg 1 8 28.08 4.48 28.85 28.08 4.74 21.40 33.90 12.50 -0.21 -1.66
wt 2 8 2.04 0.41 2.04 2.04 0.36 1.51 2.78 1.27 0.35 -1.15
hp 3 8 81.88 22.66 78.50 81.88 20.76 52.00 113.00 61.00 0.14 -1.81

se
mpg 1.59
wt 0.14
hp 8.01
--
: 0
: 6

vars n mean sd median trimmed mad min max range skew kurtosis
mpg 1 4 19.12 1.63 18.65 19.12 1.04 17.80 21.40 3.60 0.48 -1.91
wt 2 4 3.39 0.12 3.44 3.39 0.01 3.21 3.46 0.25 -0.73 -1.70
hp 3 4 115.25 9.18 116.50 115.25 9.64 105.00 123.00 18.00 -0.09 -2.33

se
mpg 0.82
wt 0.06
hp 4.59
--
: 1

7

: 6
vars n mean sd median trimmed mad min max range skew kurtosis

mpg 1 3 20.57 0.75 21.00 20.57 0.00 19.70 21.00 1.30 -0.38 -2.33
wt 2 3 2.76 0.13 2.77 2.76 0.16 2.62 2.88 0.25 -0.12 -2.33
hp 3 3 131.67 37.53 110.00 131.67 0.00 110.00 175.00 65.00 0.38 -2.33

se
mpg 0.43
wt 0.07
hp 21.67
--
: 0
: 8

vars n mean sd median trimmed mad min max range skew
mpg 1 12 15.05 2.77 15.20 15.10 2.30 10.40 19.20 8.80 -0.28
wt 2 12 4.10 0.77 3.81 4.04 0.41 3.44 5.42 1.99 0.85
hp 3 12 194.17 33.36 180.00 193.50 40.77 150.00 245.00 95.00 0.28

kurtosis se
mpg -0.96 0.80
wt -1.14 0.22
hp -1.44 9.63
--
: 1
: 8

vars n mean sd median trimmed mad min max range skew kurtosis
mpg 1 2 15.40 0.57 15.40 15.40 0.59 15.00 15.80 0.8 0 -2.75
wt 2 2 3.37 0.28 3.37 3.37 0.30 3.17 3.57 0.4 0 -2.75
hp 3 2 299.50 50.20 299.50 299.50 52.63 264.00 335.00 71.0 0 -2.75

se
mpg 0.4
wt 0.2
hp 35.5

7. Discussion:

• We specify a subset of the dataframe tb that includes only the columns of interest – mpg,
wt, and hp and save it into a variable tb_columns.

• Next, we create a list, tb_factors, that contains the factors am and cyl.

• After that, we call the describeBy() function from the psych package. This function
calculates descriptive statistics for each combination of levels of the factors am and cyl
and for each of the continuous variables mpg, wt, and hp.

8

Visualizing Continuous Data

Let’s take a closer look at some of the most effective ways of visualizing univariate continuous
data, including

(i) Bee Swarm plots;

(ii) Stem-and-Leaf plots;

(iii) Histograms;

(iv) PDF and CDF Density plots;

(v) Box plots;

(vi) Violin plots;

(vii) Q-Q plots.

Bee Swarm Plot

1. We extend a Bee Swarm plot of a one-dimensional scatter plot for a continuous variable,
split by a categorical variable. [6]

2. Consider the following code, which generates a beeswarm plot displaying vehicle weights
(wt) segmented by their number of cylinders (cyl):

Load the beeswarm package
library(beeswarm)
Create a bee swarm plot of wt column split by cyl
beeswarm(tb$wt ~ tb$cyl,

main="Bee Swarm Plot of Weight (wt) by Number of Cylinders",
xlab="Number of Cylinders",
ylab="Weight ('000 kg)",
pch=16, # type of points
cex=0.8, # size of the points
col=c("blue","red","darkgreen"),
horizontal = TRUE)

9

Bee Swarm Plot of Weight (wt) by Number of Cylinders

Number of Cylinders

W
ei

gh
t (

'0
00

 k
g)

2 3 4 5

4
6

8

3. Discussion:

• Data: We use tb𝑤𝑡 𝑡𝑏cyl to specify that we want a beeswarm plot for Weight (wt), split
by no of cylinders (cyl),

• Title: It is labeled “Bee Swarm Plot of Weight (wt) by Number of Cylinders”.

• Axes Labels: The x-axis shows “Number of Cylinders”, while the y-axis denotes
“Weight (’000 kg)”.

• Data Points: Using pch=16, data points appear as solid circles.

• Size of Points: With cex=0.8, these circles are slightly smaller than default.

• Colors: The col parameter assigns colors (“blue”, “red”, and “dark green”) based on
cylinder counts.

• Orientation: Set as horizontal with horizontal=TRUE.

• To summarize, this visual distinguishes vehicle weights across cylinder counts and high-
lights data point densities for each group.

Stem-and-Leaf Plot across one Category

1. Suppose we wanted to visualize the distribution of a continuous variable across different
levels of a categorical variable, using stem-and-leaf plots.

2. To illustrate, let us display vehicle weights (wt) separately for each transmission type
(am) using stem-and-leaf plots.

10

Choose 'wt' and 'cyl' columns from 'tb' dataframe. Assign the result to 'tb3'.
tb3 <- tb[, c("wt", "am")]

Split the 'tb3' tibble into subsets based on 'am'. Each subset consists of rows with the same 'am' value. Save the list of these subsets to 'tb_split'.
tb_split <- split(tb3, tb3$am)

Apply a function to each subset of 'tb_split' using 'lapply()'.
The function takes a subset 'x' and creates a stem-and-leaf plot of the 'wt' values in 'x'.
lapply(tb_split,

function(x)
stem(x$wt))

The decimal point is at the |

2 | 5
3 | 22244445567888
4 | 1
5 | 334

The decimal point is at the |

1 | 5689
2 | 123
2 | 6889
3 | 2
3 | 6

$`0`
NULL

$`1`
NULL

3. Discussion:

• Column Selection: The code extracts the wt (weight) and am (transmission type) columns
from tb and saves them in tb3.

• Data Splitting: It then divides tb3 into subsets based on am values, resulting in separate
groups for each transmission type.

11

• Visualization: Using lapply(), the code generates stem-and-leaf plots for the wt values
in each subset, showcasing weight distributions for different transmission types. In this
context, it shows the distribution of vehicle weights for each transmission type (automatic
and manual).

Histograms across one Category

1. Visualizing histograms of car mileage (mpg) broken down by transmission (am=0,1)

split_data <- split(tbmpg, tbam) # Split the data by 'am' variable
par(mfrow = c(1, 2)) # Create a 1-row 2-column layout
color_vector <- c("skyblue", "gold") # Define the color vector

Create a histogram for subset with am = 0
hist(split_data[[1]],

main = "Histogram of mpg for am = 0",
breaks = seq(10, 35, by = 5), # This creates bins with ranges 10-15, 15-20, etc.
xlab = "Miles per gallon",
col = color_vector[1], # Use the color vector,
border = "black",
ylim = c(0, 10))

Create a histogram for subset with am = 1
hist(split_data[[2]],

main = "Histogram of mpg for am = 1",
breaks = seq(10, 35, by = 5), # This creates bins with ranges 10-15, 15-20, etc.
xlab = "Miles per gallon",
col = color_vector[2], # Use the color vector,
border = "black",
ylim = c(0, 10))

12

Histogram of mpg for am = 0

Miles per gallon

F
re

qu
en

cy

10 20 30

0
2

4
6

8
10

Histogram of mpg for am = 1

Miles per gallon

F
re

qu
en

cy

10 20 30

0
2

4
6

8
10

In Appendix A1, we have alternative code written using a for loop

2. Discussion:

• We aim to visualize the distribution of the mpg values from the tb dataset based on the
am variable, which can be either 0 or 1.

• Data Splitting: We segregate mpg values into two subsets using the split function,
depending on the am values. In R, the double brackets [[]] are used to access the
elements of a list or a specific column of a data frame. split_data[[1]] accesses the
first element of the list split_data.

• Layout Setting: The par function is configured to display two plots side by side in a
single row and two columns format.

3. Color Vector: We introduce a color_vector to assign distinct colors to each histogram
for differentiation.

4. Histogram: Two histograms are generated, one for each am value (0 and 1). These
histograms use various parameters like title, x-axis label, color, and y-axis limits to
provide a clear representation of the data’s distribution. [4]

Probability Density Function (PDF) across one Category

1. Visualizing Probability Density Functions (PDF) of car mileage (mpg) broken down by
transmission (am=0,1)

13

split_data <- split(tbmpg, tbam) # Split 'mpg' data by 'am' values
par(mfrow = c(1, 2)) # Set layout for 2 plots side by side
color_vector <- c("skyblue", "gold") # Define colors for the plots

Calculate density for am = 0 and plot it
dens_0 <- density(split_data[[1]])
plot(dens_0,

main = "PDF of mpg for am = 0",
xlab = "Miles per gallon",
col = color_vector[1],
border = "black",
ylim = c(0, 0.15),
lwd = 2) # Plot density curve for am = 0

polygon(dens_0, col = color_vector[1], border = "black") # Fill under the curve

Calculate density for am = 1 and plot it
dens_1 <- density(split_data[[2]])
plot(dens_1,

main = "PDF of mpg for am = 1",
xlab = "Miles per gallon",
col = color_vector[2],
border = "black",
ylim = c(0, 0.15),
lwd = 2) # Plot density curve for am = 1

polygon(dens_1, col = color_vector[2], border = "black") # Fill under the curve

5 10 20 30

0.
00

0.
05

0.
10

0.
15

PDF of mpg for am = 0

Miles per gallon

D
en

si
ty

10 20 30 40

0.
00

0.
05

0.
10

0.
15

PDF of mpg for am = 1

Miles per gallon

D
en

si
ty

14

In Appendix A2, we have alternative code written using a for loop

2. Discussion:

• dens_0 <- density(split_data[[1]]) calculates the density values for the subset
where am is 0.

• The subsequent plot function visualizes the density curve, setting various parameters
like the title, x-axis label, color, and line width.

• The polygon function fills the area under the density curve with the specified color, giving
a shaded appearance to the plot.

• The process is repeated for the subset where am is 1. The code calculates the density,
plots it, and then uses the polygon function to shade the area under the curve.

In Appendix A3, we demonstrate how to draw overlapping PDFs on the same plot

Cumulative Density Function (CDF) across one Category

Split the data by 'am' variable
split_data <- split(tbmpg, tbam)

Define the color vector
color_vector <- c("blue", "black")

Define the legend labels
legend_labels <- c("am = 0", "am = 1")

Create a cumulative density plot for each subset
Start with an empty plot with ranges accommodating both data sets
plot(0, 0, xlim = range(mtcars$mpg), ylim = c(0, 1), type = "n",

xlab = "Miles per gallon", ylab = "Cumulative Density",
main = "CDFs of Mileage (mpg) for automatic, manual transmissions (am)")

for (i in 1:length(split_data)) {
Calculate empirical cumulative density function
ecdf_func <- ecdf(split_data[[i]])

Add CDF plot using curve function
curve(ecdf_func(x),

from = min(split_data[[i]]), to = max(split_data[[i]]),
col = color_vector[i],

15

add = TRUE,
lwd = 2) # line width

}
Add legend to the plot
legend("bottomright", legend = legend_labels, fill = color_vector, border = "black")

10 15 20 25 30

0.
0

0.
4

0.
8

CDFs of Mileage (mpg) for automatic, manual transmissions (am)

Miles per gallon

C
um

ul
at

iv
e

D
en

si
ty

am = 0
am = 1

Box Plots across one Category

Visualizing Median using Box Plot – median weight of the cars broken down by cylinders
(cyl=4,6,8)

boxplot(mpg~cyl,
main = "Boxplot of Miles Per Gallon (mpg) by Cylinders",
ylab = "Cylinders (cyl)",
xlab = "Mileage (mpg)",
col = c("gold","skyblue","lightpink"),
horizontal = TRUE
)

16

4
6

8

10 15 20 25 30

Boxplot of Miles Per Gallon (mpg) by Cylinders

Mileage (mpg)

C
yl

in
de

rs
 (

cy
l)

library(ggplot2)

Attaching package: 'ggplot2'

The following objects are masked from 'package:psych':

%+%, alpha

The following object is masked from 'tb':

mpg

library(ggbeeswarm)
Create the beeswarm plot
ggplot(tb,

aes(x = cyl,
y = mpg)) +

geom_beeswarm() +
labs(title = "Bee Swarm plot of Miles Per Gallon (mpg) by Cylinders",

x = "Cylinders (cyl)",
y = "Mileage (mpg)") +

theme_minimal() +

17

theme(panel.background = element_rect(fill = "lightblue"))

10

15

20

25

30

35

4 6 8
Cylinders (cyl)

M
ile

ag
e

(m
pg

)
Bee Swarm plot of Miles Per Gallon (mpg) by Cylinders

Means Plot across one Category

Visualizing Means – mean plot showing the average weight of the cars, broken down by trans-
mission (am= 0 or 1)

library(gplots)

Attaching package: 'gplots'

The following object is masked from 'package:stats':

lowess

plotmeans(data = tb,
mpg ~ cyl,
mean.labels = TRUE,
digits=3,
main = "Mean(mpg) by cyl = {4,6,8}"

18

)

15
20

25
30

Mean(mpg) by cyl = {4,6,8}

cyl

m
pg

26.664

19.743

15.100

4 6 8

n=11 n=7 n=14

Means Plot across two Categories

We show a mean plot showing the mean weight of the cars broken down by Transmission Type
(am= 0 or 1) & cylinders (cyl = 4,6,8).

library(gplots)
plotmeans(mpg ~ interaction(am, cyl, sep = ", ")

, data = mtcars
, mean.labels = TRUE
, digits=2
, connect = FALSE
, main = "Mean (mpg) by cyl = {4,6,8} & am = {0,1}"
, xlab= "cyl = {4,6,8} & am = {0,1}"
, ylab="Average MPG"
)

19

10
15

20
25

30

Mean (mpg) by cyl = {4,6,8} & am = {0,1}

cyl = {4,6,8} & am = {0,1}

A
ve

ra
ge

 M
P

G

22.90

28.08

19.12
20.57

15.05 15.40

0, 4 1, 4 0, 6 1, 6 0, 8 1, 8

n=3 n=8 n=4 n=3 n=12 n=2

References

[1] R Core Team (2021). R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Fox, J. and Weisberg, S. (2011). An R Companion to Applied Regression, Second Edition.
Thousand Oaks CA: Sage.

[2] Revelle, W. (2020). psych: Procedures for Psychological, Psychometric, and Person-
ality Research. Northwestern University, Evanston, Illinois. R package version 2.0.9.
https://CRAN.R-project.org/package=psych

[3] Chambers, J. M., Freeny, A. E., & Heiberger, R. M. (1992). Analysis of variance; designed
experiments. In Statistical Models in S (pp. 145–193). Pacific Grove, CA: Wadsworth &
Brooks/Cole.

[4] Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.).
Springer.

Appendix

Appendix A1

Visualizing histograms of car mileage (mpg) broken down by transmission (am=0,1)

20

Code written using a for loop

Split the data by 'am' variable
split_data <- split(tbmpg, tbam)

Create a 1-row 2-column layout
par(mfrow = c(1, 2))

Define the color vector
color_vector <- c("skyblue", "gold")

Create a histogram for each subset
for (i in 1:length(split_data)) {

hist(split_data[[i]],
main = paste("Histogram of mpg for am =", i - 1),
breaks = seq(10, 35, by = 5), # This creates bins with ranges 10-15, 15-20, etc.
xlab = "Miles per gallon",
col = color_vector[i], # Use the color vector,
border = "black",
ylim = c(0, 10))

}

Histogram of mpg for am = 0

Miles per gallon

F
re

qu
en

cy

10 20 30

0
2

4
6

8
10

Histogram of mpg for am = 1

Miles per gallon

F
re

qu
en

cy

10 20 30

0
2

4
6

8
10

21

Appendix A2

Visualizing Probability Density Function (PDF) of car milegage (mpg) broken down by trans-
mission (am=0,1), using for loop

Split the data by 'am' variable
split_data <- split(tbmpg, tbam)

Create a 1-row 2-column layout
par(mfrow = c(1, 2))

Define the color vector
color_vector <- c("skyblue", "gold")

Create a density plot for each subset
for (i in 1:length(split_data)) {

Calculate density
dens <- density(split_data[[i]])

Plot density
plot(dens,

main = paste("PDF of mpg for am =", i - 1),
xlab = "Miles per gallon",
col = color_vector[i],
border = "black",
ylim = c(0, 0.15), # Adjust this value if necessary
lwd = 2) # line width

Add a polygon to fill under the density curve
polygon(dens, col = color_vector[i], border = "black")

}

22

5 10 20 30

0.
00

0.
05

0.
10

0.
15

PDF of mpg for am = 0

Miles per gallon

D
en

si
ty

10 20 30 40

0.
00

0.
05

0.
10

0.
15

PDF of mpg for am = 1

Miles per gallon

D
en

si
ty

Appendix A3

Visualizing Probability Density Function (PDF) of car milegage (mpg) broken down by trans-
mission (am=0,1), overlapping PDFs on the same plot

Split the data by 'am' variable
split_data <- split(tbmpg, tbam)

Define the color vector
color_vector <- c("skyblue", "gold")

Define the legend labels
legend_labels <- c("am = 0", "am = 1")

Create a density plot for each subset
Start with an empty plot with ranges accommodating both data sets
plot(0, 0, xlim = range(tb$mpg), ylim = c(0, 0.15), type = "n",

xlab = "Miles per gallon", ylab = "Density",
main = "PDFs of Mileage (mpg) for automatic, manual transmissions (am)")

for (i in 1:length(split_data)) {
Calculate density
dens <- density(split_data[[i]])

23

Add density plot
lines(dens,

col = color_vector[i],
lwd = 2) # line width

Add a polygon to fill under the density curve
polygon(dens, col = adjustcolor(color_vector[i], alpha.f = 0.8), border = "black")

}

Add legend to the plot
legend("topright", legend = legend_labels, fill = color_vector, border = "black")

10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

PDFs of Mileage (mpg) for automatic, manual transmissions (am)

Miles per gallon

D
en

si
ty

am = 0
am = 1

24

	Continuous x Categorical data (1 of 2)
	Summarizing Continuous Data
	Across one Category
	Across two Categories

	Visualizing Continuous Data
	Bee Swarm Plot
	Stem-and-Leaf Plot across one Category
	Histograms across one Category
	Probability Density Function (PDF) across one Category
	Cumulative Density Function (CDF) across one Category
	Box Plots across one Category
	Means Plot across one Category
	Means Plot across two Categories

	References
	Appendix

