
Continuous Data (1 of 2)

Aug 8, 2023.

Exploring Univariate Continuous Data

THIS CHAPTER explores how to summarize and visualize univariate, continuous data.

1. Univariate continuous data refers to data coming from one feature or variable, which
could take on an infinite number of possible values, typically within an interval [1].

2. For instance, in the mtcars dataset in R, variables like mpg (miles per gallon), wt (weight),
and hp (horsepower) epitomize continuous data. They are not limited to specific, separate
numbers and can encompass any value, including decimal points, within their respective
ranges. [2]

3. We will leverage the capabilities of R programming and the dplyr package to compute
descriptive statistics in order to succinctly represent our data. Further on, the spotlight
will be on visualization. With the help of the robust ggplot package, we will create
{bee swarm plots, stem-and-leaf plots, histograms, density plots, box plots, violin plots}.
These plots will not only represent our univariate continuous data but also facilitate our
understanding of data distribution, outliers, and central tendency.

4. Data: Suppose we run the following code to prepare the mtcars data for subsequent
analysis and save it in a tibble called tb.

Load the required libraries, suppressing annoying startup messages
library(tibble)
suppressPackageStartupMessages(library(dplyr))
Read the mtcars dataset into a tibble called tb
data(mtcars)
tb <- as_tibble(mtcars)
Convert relevant columns into factor variables
tb$cyl <- as.factor(tb$cyl) # cyl = {4,6,8}, number of cylinders
tb$am <- as.factor(tb$am) # am = {0,1}, 0:automatic, 1: manual transmission
tb$vs <- as.factor(tb$vs) # vs = {0,1}, v-shaped engine, 0:no, 1:yes
tb$gear <- as.factor(tb$gear) # gear = {3,4,5}, number of gears

1

Directly access the data columns of tb, without tb$mpg
attach(tb)

Measures of Central Tendency

1. In our journey of understanding data, we often turn to certain statistical tools, among
which, the measures of central tendency play a pivotal role. These measures provide
a way to summarize our data with a single value that represents the “center” or the
“average” of our data distribution. [1]

2. Primarily, there are three measures of central tendency that we often rely on: the mean,
median, and mode. [2]

3. As an illustration, here is R code to determine the mean and median of the wt (weight)
for all vehicles:

Mean of wt
mean(tb$wt)

[1] 3.21725

Median of wt
median(tb$wt)

[1] 3.325

5. For finding the mode of the mpg (miles per gallon) column, we use the mfv() function in
the modeest package.

Calculate mode of mpg
library(modeest)
mfv(tb$mpg) # Mode

[1] 10.4 15.2 19.2 21.0 21.4 22.8 30.4

6. The mfv() function estimates the mode using a kernel density estimator, which may not
always coincide with a specific value in the dataset [4].

2

Measures of Variability

1. In our exploration of continuous data, we also consider measures of variability. These
statistical measures provide insight into the spread or dispersion of our data points. To
further illustrate the concepts we’ve discussed, we’ll apply these measures of variability
to the mpg column from the mtcars dataset.

2. Range: This is the difference between the highest and the lowest value in our data set.
However, while range is easy to calculate and understand, it is sensitive to outliers, so
we must interpret it carefully. The range() function in R provides the minimum and
maximum mpg.

Range of mpg
range(tb$mpg)

[1] 10.4 33.9

3. Min and Max: We can off course measure the minimum and maximum values, using
the following simple code.

Minimum mpg
min(tb$mpg)

[1] 10.4

Maximum mpg
max(tb$mpg)

[1] 33.9

4. Variance: It is calculated as the average of the squared deviations from the mean.
Larger variances suggest that the data points are more spread out around the mean.
One limitation of the variance is that its units are the square of the original data’s
units, which can make interpretation difficult. We use the var() function to compute the
variance.

Variance of mpg
var(tb$mpg)

3

[1] 36.3241

5. Standard Deviation: This is simply the square root of the variance. Because it is in
the same units as the original data, it is often easier to interpret than the variance. A
larger standard deviation indicates a greater spread of data around the mean.

Standard Deviation of mpg
sd(tb$mpg)

[1] 6.026948

6. Interquartile Range (IQR): It is another measure of dispersion, especially useful when
we have skewed data or outliers. It represents the range within which the central 50% of
our data falls. This measure is less sensitive to extreme values than the range, variance,
or standard deviation. To find the interquartile range (IQR), which provides the spread
of the middle 50% of the mpg values, we use the IQR() function.

Inter-Quartile Range of mpg
IQR(tb$mpg)

[1] 7.375

7. Skewness and Kurtosis:

• Skewness is a measure of the asymmetry of our data. Positive skewness indicates a
distribution with a long right tail, while negative skewness indicates a distribution with
a long left tail.

• Kurtosis, on the other hand, measures the “tailedness” of the distribution. A distri-
bution with high kurtosis exhibits a distinct peak and heavy tails, while low kurtosis
corresponds to a flatter shape.

• These two measures can be computed using the skewness() and kurtosis() functions
from the moments package.

Load moments package
suppressPackageStartupMessages(library(moments))

Skewness of 'wt' in the mtcars dataframe
skewness(tb$wt)

[1] 0.4437855

4

Kurtosis of 'wt' in the mtcars dataframe
kurtosis(tb$wt)

[1] 3.172471

8. Overall, these measures of variability help us quantify the dispersion and shape of our
data, offering a more complete picture when combined with measures of central tendency.
[3]

Summarizing Univariate Continuous Data

1. Our primary objective in summarizing data is to gain an initial overview or snapshot
of the data set we’re dealing with. This fundamental analysis provides us a sense of
the data’s central tendency, spread, and distribution shape, which in turn guides our
decision-making process for subsequent stages of data analysis.

2. In R, the summary() function offers a succinct summary of the selected data object.
When applied to a numeric vector such as mpg from the mtcars dataset, it yields the
minimum and maximum values, the first quartile (25th percentile), the median (50th
percentile), the third quartile (75th percentile), and the mean.

A summary of 'mpg'
summary(tb$mpg)

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.40 15.43 19.20 20.09 22.80 33.90

3. The describe() function, part of the psych package, goes a step further by providing a
more comprehensive summary of the data. It includes additional statistics like the num-
ber of valid (non-missing) observations, the standard deviation, and metrics of skewness
and kurtosis [5].

suppressPackageStartupMessages(library(psych))

A summary of 'mpg' using describe()
describe(tb$mpg)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 32 20.09 6.03 19.2 19.7 5.41 10.4 33.9 23.5 0.61 -0.37 1.07

5

4. Specific columns from describe(tb$mpg)

Select specific columns from describe(mpg)
columns = c("n","mean","sd","median","min","max","skew","kurtosis")
describe(tb$mpg)[, columns]

n mean sd median min max skew kurtosis
X1 32 20.09 6.03 19.2 10.4 33.9 0.61 -0.37

Summarizing an entire dataframe or tibble

1. The function summary() in R can also be employed to summarize the entirety of a
dataframe or tibble in a comprehensive manner. [3].

A summary of the tibble tb
summary(tb)

mpg cyl disp hp drat
Min. :10.40 4:11 Min. : 71.1 Min. : 52.0 Min. :2.760
1st Qu.:15.43 6: 7 1st Qu.:120.8 1st Qu.: 96.5 1st Qu.:3.080
Median :19.20 8:14 Median :196.3 Median :123.0 Median :3.695
Mean :20.09 Mean :230.7 Mean :146.7 Mean :3.597
3rd Qu.:22.80 3rd Qu.:326.0 3rd Qu.:180.0 3rd Qu.:3.920
Max. :33.90 Max. :472.0 Max. :335.0 Max. :4.930

wt qsec vs am gear carb
Min. :1.513 Min. :14.50 0:18 0:19 3:15 Min. :1.000
1st Qu.:2.581 1st Qu.:16.89 1:14 1:13 4:12 1st Qu.:2.000
Median :3.325 Median :17.71 5: 5 Median :2.000
Mean :3.217 Mean :17.85 Mean :2.812
3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:4.000
Max. :5.424 Max. :22.90 Max. :8.000

2. Discussion

• For numeric columns, summary() delivers a six-number summary that includes minimum,
first quartile (Q1 or 25th percentile), median (Q2 or 50th percentile), mean, third quartile
(Q3 or 75th percentile), and maximum. This gives a broad understanding of the central
tendency and dispersion of the data within each numeric column.

6

• For categorical (factor) columns, summary() generates the counts of each category level.
The output of this code is essentially a comprehensive snapshot of the tb tibble, enabling
us to quickly understand the nature of our data. [3]

3. To obtain a more detailed statistical summary of an entire dataframe or tibble, we can
employ the describe() function from the psych package [2].

Select specific columns from describe(mpg)
columns = c("n","mean","sd","median","min","max","skew","kurtosis")
describe(tb)[, columns]

n mean sd median min max skew kurtosis
mpg 32 20.09 6.03 19.20 10.40 33.90 0.61 -0.37
cyl* 32 2.09 0.89 2.00 1.00 3.00 -0.17 -1.76
disp 32 230.72 123.94 196.30 71.10 472.00 0.38 -1.21
hp 32 146.69 68.56 123.00 52.00 335.00 0.73 -0.14
drat 32 3.60 0.53 3.70 2.76 4.93 0.27 -0.71
wt 32 3.22 0.98 3.33 1.51 5.42 0.42 -0.02
qsec 32 17.85 1.79 17.71 14.50 22.90 0.37 0.34
vs* 32 1.44 0.50 1.00 1.00 2.00 0.24 -2.00
am* 32 1.41 0.50 1.00 1.00 2.00 0.36 -1.92
gear* 32 1.69 0.74 2.00 1.00 3.00 0.53 -1.07
carb 32 2.81 1.62 2.00 1.00 8.00 1.05 1.26

4. Discussion:

• The describe() function analyzes each column in the provided tibble individually and
outputs a range of useful statistics. For numeric columns, it offers count, mean, standard
deviation, trimmed mean, minimum and maximum values, range, skewness, and kurtosis
among others.

• For non-numeric or factor columns, the describe() function still provides a count of
elements but defaults to NA for the rest of the statistics, as these metrics are not appli-
cable.

Visualizing Univariate Continuous Data

• In our journey to explore and understand univariate continuous data, visualizations
act as our valuable companions. Visual graphics provide us with an instant and clear
understanding of the underlying data patterns and distributions that may otherwise be
challenging to discern from raw numerical data.

7

• Let’s take a closer look at some of the most effective ways of visualizing univariate
continuous data, including

(i) Bee Swarm plots;

(ii) Stem-and-Leaf plots

(iii) Histograms;

(iv) PDF and CDF Density plots;

(v) Box plots;

(vi) Violin plots;

(vii) Quantile-Quantile (Q-Q) Plots

Bee Swarm plot

1. A Bee Swarm plot is a one-dimensional scatter plot that reduces overlap and provides
a better representation of the distribution of individual data points (Ellis, 2011). This
type of plot provides a more detailed view of the data, particularly for smaller data sets.

2. It displays all of the individual data points along with a visual representation of their
distribution. It can be useful for displaying the distribution of small datasets.

Load the beeswarm package
library(beeswarm)

Create a bee swarm plot of wt column
beeswarm(tb$wt,

main="Bee Swarm Plot of Weight (wt)",
ylab = "Weight ('000 kg)",
pch=16,
cex=1.2,
col="blue")

8

Bee Swarm Plot of Weight (wt)

W
ei

gh
t (

'0
00

 k
g)

2
3

4
5

• In the above code, we load the beeswarm package using the library() function.

• We then create a bee swarm plot of the wt column using the beeswarm() function.

• The main argument is used to specify the title of the plot.

• The pch argument is used to set the type of points to be plotted, and the cex argument
is used to set the size of the points.

• The col argument is used to set the color of the points.

• The resulting plot will display the individual wt values in the dataset as points on a
horizontal axis, with no overlap between points. This provides a visual representation of
the distribution of the data, as well as any outliers or gaps in the data.

Stem-and-Leaf Plots

1. Stem-and-leaf plots serve as an efficient tool for visualizing the distribution of data,
particularly when working with small to medium-sized datasets. The method involves
breaking down each data point into a “stem” and a “leaf”, with the “stem” representing
the primary digit(s) and the “leaf” embodying the subsequent digit(s) [7]

2. We can utilize the stem() function in R to devise stem-and-leaf plots. Here’s how we
can apply it to the mpg column in our tb tibble:

stem(tb$mpg)

The decimal point is at the |

10 | 44
12 | 3

9

14 | 3702258
16 | 438
18 | 17227
20 | 00445
22 | 88
24 | 4
26 | 03
28 |
30 | 44
32 | 49

3. In the resulting plot, the vertical bar (“|”) symbolizes the decimal point’s location.

4. This visual representation enables us to swiftly assess the data’s distribution, the center,
and the spread, in a fashion similar to a histogram. However, unlike a histogram, a
stem-and-leaf plot retains the original data to a certain degree, providing more granular
detail.

Histogram

1. A histogram is a graphical representation showcasing the frequency of discrete or grouped
data points within a dataset.

2. It splits the data into equal-width bins, with the height of each bar matching the fre-
quency of data points in each respective bin.

3. It serves as a valuable tool for demonstrating the distribution shape of the data. In R,
we can construct a histogram using the hist() function and control its appearance. The
final histogram visually depicts the frequency of mpg values in the dataset, where each
bar represents the count of observations within a specific range of values. [7]

Create a histogram of mpg column with a specific number of bins of equal width
hist(tb$mpg,

breaks = 12, # This creates 12 bins of equal width
main="Histogram of mpg (with 12 breaks)",
xlab="Miles per gallon (mpg",
col="lightblue",
border="black")

10

Histogram of mpg (with 12 breaks)

Miles per gallon (mpg

F
re

qu
en

cy

10 15 20 25 30

0
2

4
6

4. Discussion:

• This code generates a histogram of mpg using the hist() function. The main argument
denotes the plot’s title, while the xlab argument labels the x-axis.

• We use the col argument to specify the color of the histogram bars, and the border
argument to determine the color of the bar borders.

• We can control the number of bins or the ranges of the bins in a histogram using the
breaks argument inside the hist() function:

5. We can alternately specify the ranges of the bins:

Create a histogram of mpg column with specific bin ranges
hist(tb$mpg,

breaks = seq(5, 35, by = 5), # This creates bins with ranges 10-15, 15-20, etc.
main="Histogram of Mileage (with breaks of 5)",
xlab="Miles per gallon (mpg)",
col="lightblue",
border="black")

11

Histogram of Mileage (with breaks of 5)

Miles per gallon (mpg)

F
re

qu
en

cy

5 10 15 20 25 30 35

0
2

4
6

8
12

6. Discussion:

• The breaks argument uses the seq() function to create a sequence of break points from
5 to 35, with a step of 5.

• This results in bins with ranges 5-10, 10-15, 15-20, 20-25, 25-30, and 30-35. [7]

Probability Density Function (PDF) plot

1. Smoothed approximations of histograms are often represented by density plots, as they
assist in offering an estimation of the underlying continuous probability distribution of
a given dataset. [7]

2. Compared to histograms, these plots often present superior accuracy and aesthetic ap-
peal, and they eliminate the need for arbitrary bin selection. A density plot shares
several similarities with a histogram. However, instead of presenting the frequency of
individual values, it conveys the probability density of the dataset. [7]

Calculate density
dens <- density(mtcars$mpg)
Create a density plot
plot(dens,

main = "Probability Density Function (PDF) of Mileage (mpg)",
xlab = "Miles per gallon (mpg)",

)
Add a polygon to fill under the density curve

12

polygon(dens, col = "lightblue", border = "black")

10 20 30 40

0.
00

0.
03

0.
06

Probability Density Function (PDF) of Mileage (mpg)

Miles per gallon (mpg)

D
en

si
ty

3. Discussion:

• We use the density() function to generate a PDF plot for the mpg column.

• Here, we utilize the plot() function to graph the resulting density object.

• The main argument stipulates the title of the plot, while the xlab argument designates
the label for the x-axis.

• Through the polygon() function, we determine the shaded color.

• The final plot displays the probability density of mpg values, using the curve to signify
the data distribution. [7]

Cumulative Distribution Function (CDF) Plot

1. CDF plots visualize the fraction of data points that are less than or equal to a specified
value on the x-axis [3].

2. They facilitate easy representation of the median, percentiles, and spread.

3. In R, we can employ the ecdf() function to generate a CDF plot.

Create a CDF plot of mpg column
plot(ecdf(tb$mpg),

13

main = "CDF of Miles Per Gallon (mpg)",
xlab = "Miles Per Gallon (mpg)",
ylab = "Cumulative Density",
col = "blue", # Line color
lty = 2,
)

grid(col = "gray", lty = "dotted") # Add a grid to the plot

10 15 20 25 30 35

0.
0

0.
4

0.
8

CDF of Miles Per Gallon (mpg)

Miles Per Gallon (mpg)

C
um

ul
at

iv
e

D
en

si
ty

4. Discussion:

• ecdf(tb$mpg): The function ecdf() computes the empirical cumulative distribution
function (CDF) for the mpg column from the tb data frame.

• plot(ecdf(tb$mpg)): Plots the CDF of the mpg column.

• main, xlab, ylab: Set the title and axis labels.

• col = "blue": Colors the plot line blue; lty = 2: Uses a dashed line.

• grid(col = "gray", lty = "dotted"): Adds a gray, dotted grid to the plot.

5. Computing and Inversing CDF Values

• The following code demonstrates how to determine the cumulative distribution function
(CDF) value for a given mpg using ecdf() and how to find the mpg value corresponding
to a specific CDF with quantile().

• Suppose we want to identify the CDF at mpg = 20, here is how we do it:

14

Generate the empirical cumulative distribution function
ecdf_func <- ecdf(tb$mpg)

Derive the CDF for mpg = 20
ecdf_func(20)

[1] 0.5625

• If we’re interested in knowing the mpg value that corresponds to a certain CDF value,
the quantile() function comes to our aid. For instance, we can obtain the mpg value
associated with a CDF of 0.6 as follows:

Discover the mpg corresponding to CDF = 0.6
quantile(tb$mpg, 0.6)

60%
21

Boxplot

1. Box-and-whisker plots, commonly known as box plots, are crucial graphical instruments
for illustrating a distribution’s center, spread, and potential outliers [5].

2. Here is sample code to generate a boxplot of wt (Weight) of the cars .

boxplot(tb$wt,
xlab = "",
ylab = "Weight ('000 kg)",
main = "Boxplot of Weight (wt)",
col = "lightblue"

)

15

2
3

4
5

Boxplot of Weight (wt)

W
ei

gh
t (

'0
00

 k
g)

3. The box plot’s construction involves the use of an interquartile range (IQR) represented
by a box, which contains the middle 50% of the dataset.

4. The box’s internal line signifies the median, while the “whiskers” reach out to the smallest
and largest observations within a distance of 1.5 times the IQR.

5. The whiskers extend to the minimum and maximum non-outlier values, or 1.5 times the
interquartile range beyond the quartiles, whichever is shorter.

6. Any points outside of the whiskers are considered outliers and are plotted individually.

Violin plot

1. Violin plots are a compelling tool to merge the benefits of box plots and kernel density
plots and enable us to depict a detailed view of data distribution.

2. These plots exhibit the probability density at different values, where the plot’s breadth
represents the density or frequency of data points. More extensive areas denote a higher
aggregation of data points Akin to a box plot, a violin plot provides a visual display of
the entire data distribution via a kernel density estimate, as opposed to just presenting
the quartiles [5].

3. The vioplot() function, part of the vioplot package in R, allows us to create such a
violin plot.

library(vioplot)

Loading required package: sm

Package 'sm', version 2.2-5.7: type help(sm) for summary information

16

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':

as.Date, as.Date.numeric

Constructing a violin plot for the wt
vioplot(tb$wt,

main="Violin Plot of Weight (wt)",
ylab="Weight",
col = "lightblue")

2
3

4
5

1

Violin Plot of Weight (wt)

W
ei

gh
t

• In this code, the vioplot() function crafts a violin plot for the mpg variable. We use
the main argument to assign the plot’s title and the ylab argument to designate the
label for the y-axis.

• The resulting plot unveils the entire wt data distribution, with a kernel density estimate
indicating the concentration of data points at different sections.

• Lastly, the plot incorporates the median, quartiles, and any outliers present in the data.

Quantile-Quantile (Q-Q) Plots

1. Quantile-Quantile plots, commonly referred to as Q-Q plots, are a visual tool we use to
check if data follows a particular distribution, like a normal distribution.

17

2. Suppose we order a data column from the smallest to the biggest value, and each data
point gets a score based on its position. This is what we call a quantile. Now, imagine
a perfectly normal distribution doing the same thing. In a Q-Q plot, we compare our
data’s scores to the scores from the ideal normal distribution.

3. If our data aligns with the normal distribution, the points in the Q-Q plot will form a
straight line. But if our data doesn’t follow the normal distribution, the points will stray
from the line. This way, the Q-Q plot gives us an intuitive, visual way to decide if our
data is normally distributed or not [7].

4. In R, we can use the qqnorm() function to create the plot and the qqline() function to
add the reference line. If the points lie close to the reference line, it’s a good indication
that our data is normally distributed.

Generate a Q-Q plot for 'mpg' column
qqnorm(tb$mpg)
Add a reference line to the plot
qqline(tb$mpg)

−2 −1 0 1 2

10
15

20
25

30

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

5. This approach isn’t limited to normal distributions. We can compare our data with other
distributions too, which makes Q-Q plots a versatile tool for understanding our data’s
behavior.

18

Summary of Chapter 12 – Continuous Data (1 of 2)

This section of the book examines continuous univariate data, focusing on single variables in
the ‘mtcars’ dataset using R’s dplyr and ggplot packages. We employ R’s inherent functions
and the ‘modeest’ package to compute the mean, median, and mode, alongside variability
measures like range, variance, and standard deviation.

We use R’s ‘summary()’ and the psych package’s ‘describe()’ functions to create succinct
and detailed overviews of our data, providing insights into its central tendency, spread, and
distribution shape. These functions can also summarise an entire dataframe or tibble, setting
the stage for future analysis.

Visualisations are key to understanding data patterns and distributions. We use bee swarm
plots, box plots, violin plots, histograms, and density plots. Bee swarm plots, using the
beeswarm() function, show all data points and their distributions. Stem-and-leaf plots, created
using the stem() function, provide a quick evaluation of the data’s distribution.

Histograms, constructed with the hist() function, and density plots, using the density()
function, display data frequency and smoothed approximations respectively. Cumulative Dis-
tribution Function (CDF) plots, via the ecdf() function, show the proportion of data points
equal to or less than specific values.

Box plots, made with the boxplot function, highlight the distribution’s center, spread, and
outliers. Violin plots, via the vioplot() function, merge box plots and kernel density plots to
display data density. Lastly, Q-Q plots, created using qqnorm() and qqline(), verify if data
follows a normal distribution.

In sum, this chapter presents key R functions and techniques for visualising continuous uni-
variate data, providing valuable insights into data patterns and distributions.

References

[1]

Moore, D. S., McCabe, G. P., & Craig, B. A. (2012). Introduction to the Practice of Statistics.
Freeman.

Triola, M. (2017). Elementary Statistics. Pearson.

Gravetter, F. J., & Wallnau, L. B. (2016). Statistics for the Behavioral Sciences. Cengage
Learning.

[2]

Downey, A. B. (2014). Think Stats: Exploratory Data Analysis. O’Reilly Media.

19

[3]

Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. Sage Publications.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

[4]

Bogaert, P. (2021). “A Comparison of Kernel Density Estimators.” Computational Statistics
& Data Analysis, 77, 402-413.

[5]

Revelle, W. (2020). psych: Procedures for Psychological, Psychometric, and Personal-
ity Research. Northwestern University, Evanston, Illinois. R package version 2.0.12,
https://CRAN.R-project.org/package=psych.

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.

[6]

Ellis, K. (2011). Beeswarm: The Bee Swarm Plot, an Alternative to Stripchart. R package
version 0.2.3.

Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. The American
Statistician, 50(4), 361-365.

[7] Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605-610.

Wand, M. P., & Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall/CRC.

[8]

McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of Box Plots. The American
Statistician, 32(1), 12-16.

[9]

Hintze, J. L., & Nelson, R. D. (1998). Violin Plots: A Box Plot-Density Trace Synergism. The
American Statistician, 52(2), 181-184.

[10]

Thode Jr, H. C. (2002). Testing for normality. CRC press.

20

	Continuous Data (1 of 2)
	Exploring Univariate Continuous Data
	Measures of Central Tendency
	Measures of Variability

	Summarizing Univariate Continuous Data
	Summarizing an entire dataframe or tibble

	Visualizing Univariate Continuous Data
	Bee Swarm plot
	Stem-and-Leaf Plots
	Histogram
	Probability Density Function (PDF) plot
	Cumulative Distribution Function (CDF) Plot
	Boxplot
	Violin plot
	Quantile-Quantile (Q-Q) Plots

	Summary of Chapter 12 – Continuous Data (1 of 2)
	References

